

LYCÉE PILOTE NÉAPOLIS

DEVOIR DE CONTROLE N°2

MATIERE:SCIENCES PHYSIQUES

Profs: M^{me} Benna-M Chaabani-M Chaouch 02/02/2009

Durée : 1H

1°A

Capacité

A1

A2

A2

Α1

A2

A2

A2

C

A2

barème

0,5

1

1

1

1

0,5

Indication et consignes

*le sujet comporte 2 exercices de chimie et 2 exercices de physique..

*Une copie propre est exigée.

générales

*On exige une expression littérale avant chaque application nu mérique.

CHIMIE: (8 POINTS)

Exercice n° 1 : (3,5 pts)

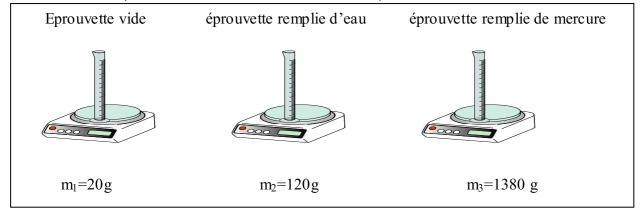
On donne: $M_{Cu} = 63 \text{ g.mol}^{-1}$; $M_S = 32 \text{ g.mol}^{-1}$; $M_O = 16 \text{ g.mol}^{-1}$

On prépare une solution aqueuse (S_1) de sulfate de cuivre ($CuSO_4$), de concentration molaire $C_1 = 0.2$ mol. L^{-1} et de volume $V_1 = 500$ m L^{-1} .

- 1°) Préciser le solvant et le soluté.
- 2°) Déterminer la masse de sulfate de cuivre qu'on doit dissoudre pour obtenir (S₁).
- 3°) On veut préparer une deuxième solution (S_2) de sulfate de cuivre, de concentration molaire $C_2 = 4.10^{-2}$ mol.L⁻¹ et de volume $V_2 = 100$ mL à partir de la solution (S_1).
 - a Déterminer le volume V_o à prélever de la solution (S₁).
- b Décrire la démarche expérimentale à suivre pour préparer (S₂) en précisant le matériel nécessaire.

Exercice n°2 : (4,5 pts)

<u>On donne</u>: $M_N = 14 \text{ g.mol}^{-1}$; $M_H = 1 \text{ g.mol}^{-1}$; $V_m = 24 \text{ L.mol}^{-1}$.


L'ammoniac de formule NH₃ est un gaz soluble dans l'eau.

- 1°) On fait dissoudre dans l'eau une quantité d'ammoniac de volume V = 0.48 L; on obtient une solution (S_1)de concentration molaire C_1 et de volume $V_1 = 100 \text{ mL}$.
 - a Déterminer C₁.
 - b- Trouver une relation entre la concentration molaire et la concentration massique.
 - c Déduire la concentration massique C'₁ de la solution.
- 2°) On mélange (S₁) avec une solution (S₁) d'ammoniac de concentration molaire C₂ et de volume V₂ = 4 V₁, on obtient une solution (S) de concentration molaire C.
 - a Montrer que $C = \frac{C_1 + 4C_2}{5}$.
 - b Sachant que C = $0,12 \text{ mol.L}^{-1}$. Déterminer C_2 .

PHYSIQUE: (12 POINTS)

Exercice n°1: (6 pts)

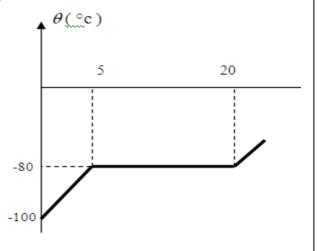
On réalise les trois pesées suivantes en utilisant comme liquides l'eau et le mercure de meme volume V.

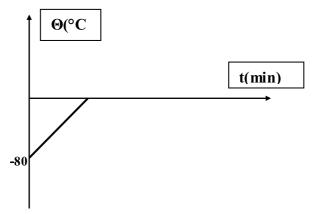
1°) a – Définir la densité d'une substance par rapport à l'eau.
b – Exprimer la densité de mercure est de m ₁ , m ₂ et m ₃ .
c – Montrer que la densité du mercure est d = 13,6.
2°) a – Définir la masse volumique d'un corps.
b – Déterminer la masse volumique du mercure en g. cm ⁻³ et en Kg. m ⁻³

On donne: $\rho_{eau} = 1000 Kgm^{-3}$.

c-Déduire le volume V utilisé.

3°) On mélange $V_1 = 100 \text{ cm}^3$ d'eau avec un volume V_2 de mercure ; on obtient un mélange de masse volumique $\rho = 1, 6gcm^{-3}$. Déterminer V_2 .


Exercice n°2: (pts)


On donne:

Corps	Mercure	Ammoniac	Chlorure d'hydrogène
Température d'ébullition (°C)	375	-35	-85
Température de fusion (°C)	-40	-80	-114

On chauffe un corps pur (A) et on mesure la température au cours du temps ; on obtient l'allure de la courbe suivante :

- 1°) a Identifier le corps (A) en s'aidant du tableau et donner le nom du changement d'état qui se produit au cours de cette expérience.
- b Quelle est la durée de temps changement d'état.
- c Nommer la transformation changement d'état.
- 2°) a Reproduire et compléter le l'allure de la courbe jusqu'à atteindre température de O°C.
- b Préciser l'état physique de (A) partie de la courbe.
- 3°) On chauffe un corps (B) parmi la le tableau ; et on trace la courbe de la variation de la température au on obtient l'allure de la figure 2 . Identifier le corps (B) et préciser son Justifier la réponse.

0,5

0.5

0,5

1

1

1

A1 A2

A2

A1

A2

A2